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Abstract

An algorithm for solving arbitrary linear constraints in molecular dynamics simulations of rigid and semi-rigid molecules
is presented. The algorithm – P-SHAKE – is a modified version of the SHAKE [J.-P. Ryckaert, G. Ciccotti, H.J.C. Berend-
sen, Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alk-
anes, J. Comput. Phys. 23 (1977) 327–341.] algorithm with a preconditioner applied which effectively de-couples the
constraint equations. It achieves quadratic convergence, as does M-SHAKE [V. Kräutler, W.F. van Gunsteren, P.H. Hünen-
berger, A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simula-
tions. J. Comput. Chem. 22 (5) (2001) 501–508.], yet at a cost of only Oðn2Þ operations per iteration, as opposed to Oðn3Þ per
iteration for M-SHAKE. The algorithm is applied to simulations of rigid water, DMSO, chlorophorm and non-rigid ethane
and cyclohexane and is shown to be faster than M-SHAKE by up to a factor of three for relatively small error tolerances.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In molecular dynamics (MD) simulations the limiting factor for the time step is usually the fast motions of the
system, such as the vibration of internal bonds. These vibrations usually occur on a much smaller time scale than
the internal or external movement of the molecule and in most cases can be neglected. Therefore, constraining the
fast internal motions (i.e. internal bonds) is an efficient way of increasing the simulation time step.

The most common way to constrain these internal motions is the SHAKE algorithm [16], in which the
atomic coordinates within a molecule are iteratively and independently adjusted until all constraints are ful-
filled up to a prescribed tolerance. RATTLE [1] solves the constraint equations in a similar fashion, adjusting
also the atomic velocities and therefore provides a higher accuracy per iteration than SHAKE does. In the
same category, both MSHAKE [12] and WIGGLE [13] solve the constraint equations using derived constraint
forces, as opposed to positions and velocities in SHAKE and RATTLE respectively. Since for all these
methods the constraint equations are solved for iteratively as if they were independent (i.e. not coupled), they
converge slowly for tightly-coupled, rigid molecules.
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A different approach is presented in Ciccotti and Ryckaert [5] and implemented in both Barth et al. [2] and
M-SHAKE [11], where the constraints are solved for as a non-linear system of equations using Newton’s
Method. This approach converges quadratically as opposed to linearly for SHAKE and similar algorithms,
yet each iteration is substantially more expensive, since it involves the solution of a system of linear equations,
which can only be done in Oðn3Þ, as opposed to the OðnÞ operations per iteration in SHAKE.

Further efforts include SETTLE [15] and LINCS [10]. SETTLE solves the constraint equations for water or
any other three-body rigid molecule analytically. This approach, however, is restricted to small molecules due
to its complexity. LINCS was designed for very large molecules with weakly coupled constraints. The con-
straints are solved for by computing the projection of the constraint forces onto the force vector of the entire
system. As stated in Hess et al. [10], however, LINCS is not suited for molecules with angular constraints since
a matrix inversion, which is computed iteratively in the algorithm, becomes unstable and computationally
expensive.

This paper presents P-SHAKE, an iterative method to solve linear constraint equations based on SHAKE,
yet with a preconditioner applied to it such that it converges quadratically, as M-SHAKE does, yet at a much
lower computational cost. The method is geared towards rigid molecules, yet it is also applicable to semi-rigid
geometries or molecules with rigid sub-groups. Section 2 describes the algorithm and its derivation in detail. In
Section 3, the algorithm is then tested against SHAKE, M-SHAKE and the procedure described in Ciccotti
and Ryckaert [5] for three rigid solvent molecules and two semi-rigid molecules.
2. Method

The nc linear distance constraints within a molecule can be written in the form of nc constraint equations
rðtÞl ¼ x
ðtÞ
la � x

ðtÞ
lb

��� ���2

2
� d2

l ¼ 0; l ¼ 1 . . . nc; ð1Þ
where xla and xlb are the positions of the two particles involved in the constraint rl at time t and dl is the pre-
scribed inter-atomic distance. In the following we will always assume the 2-norm when the notation iÆi is used.

The constraints can be enforced while integrating the equations of motion, using Lagrange’s method of
undetermined multipliers [16]. For each time-step, this is equivalent to finding the Lagrange multipliers kk,
k = 1. . .nc, such that the constrained particle positions
x
ðtþDtÞ
i ¼ ~x

ðtþDtÞ
i þ

Xnc

k¼1

kk
orðtÞk

ox
ðtÞ
i

ðDtÞ2m�1
i ; ð2Þ
where ~x
ðtþDtÞ
i is the unconstrained particle position at time t + Dt and mi the mass of the particle i, satisfy all of

the nc constraints.
For simplicity, we write the weighted constraint gradients as
v
ðtÞ
k;i ¼

orðtÞk

ox
ðtÞ
i

ðDtÞ2m�1
i ð3Þ
which, inserted into Eq. (2), yields
x
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which, in turn, inserted into the constraint Eq. (1), yields the constraint equation at time t + Dt
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Using the notation
1 In
Raphs
believe

2 In
deriva
dxl ¼ ~x
ðtþDtÞ
la � ~x

ðtþDtÞ
lb ð6Þ
and
dvk;l ¼ v
ðtÞ
k;la � v

ðtÞ
k;lb ð7Þ
we can abbreviate Eq. (5) as
rðtþDtÞ
l ¼ dxl þ

Xnc

k¼1

kkdvk;l

�����
�����

2

� d2
l : ð8Þ
The rl (for simplicity we shall ignore the superscript) form a system of nc non-linear equations in the kk which
can be solved iteratively.

A simple approach, suggested in Ryckaert et al. [16] and referred to therein as the SHAKE algorithm, is to
assume that the rl depend only on the respective kl (i.e. the equations are treated as if they were not coupled)
and solve each rl for kl iteratively using Newton’s Method:
kl ¼ �
rl

orl=okl

����
kk¼0;k¼1...nc

¼ �kdxlk � d2
l

2dxl � dvl;l
: ð9Þ
The particle positions are updated in each iteration using
~xi  ~xi þ
Xnc

k¼1

kkvk;i: ð10Þ
In Eq. (9) we set all kk = 0 since we update the particle positions in each step and therefore reset the kk to their
initial value 0. This effectively eliminates all terms linear in kk in rl and all terms quadratic in kk in both rl and
orl/okl. This elimination is referred to as linearization in Ryckaert et al. [16].

The more straight-forward way of solving the system of non-linear equations is to use Newton’s Method or
a Quasi-Newton Method, i.e. the Chord Method [8].

Both methods involve computing the Jacobian of the vector of constraint equations r
Jr ¼

or1

ok1

or1

ok2
� � � or1

oknc

or2

ok1

or2

ok2
� � � or2

oknc

..

. ..
. . .

. ..
.

ornc

ok1

ornc

ok2
� � � ornc

oknc

0BBBBBB@

1CCCCCCA: ð11Þ
The kk are then computed by solving the system of linear equations
ðJrjkk¼0Þk ¼ �rjkk¼0 ð12Þ
and the unconstrained positions ~xi are updated as in the SHAKE algorithm using Eq. (10).
This is repeated until
max
k¼1...nc

jrkj < s;
where s is the prescribed tolerance of the constraints. For the Chord Method, the Jacobian Jr is computed
only once in the first iteration and used in all following iterations thereafter [5,2]1. For Newton’s Method –
as used in M-SHAKE [11]2 and Barth et al. [2] – the Jacobian is re-computed in every iteration.
their paper, Ciccotti and Ryckaert [5] explicitly refer to the iteration of their ‘‘matrix method’’ in Section 4.1.1. as ‘‘Newton-
on’’, yet at the top of page 380 they state ‘‘Note that while A�1 must be evaluated once per time step [. . .]’’, which leads the author to
that in fact the Chord Method was used.

Kräutler et al. [11] Newton’s Method is used rather inadvertently, and the authors make no explicit mention thereof in their
tion.
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Although both approaches solve the coupled constraint equations and both have an asymptotic cost in
Oðn3Þ associated with solving the system in Eq. (12) in the first iteration, Newton’s Method converges quadrat-
ically whereas the Chord Method converges only linearly. The advantage of using the Chord Method is that
the inverse or Jr or a suitable decomposition thereof can be precomputed in the first iteration, therefore sig-
nificantly accelerating the solution of the linear system of equations (Eq. (12)) in the following iterations, i.e. at
a cost in Oðn2Þ vs. Oðn3Þ.

Despite their increased cost compared to SHAKE, both methods significantly outperform SHAKE for
tightly-coupled, rigid molecules since the number of iterations needed is drastically reduced by solving the cou-

pled system of equations as opposed to the assumption of independence in SHAKE.
The error in the simpler approach (SHAKE, Eq. (9)) can be computed by inserting the computed kk (Eq.

(9)) into the original constraint equations (Eq. (8)), thus obtaining
rl ¼ dxl �
Xnc

k¼1

kdxkk2 � d2
k

2dxk � dvk;k
dvk;l

�����
�����

2

� d2
l : ð13Þ
By replacing kdxlk2 � d2
l with el, the error of the lth constraint equation, we get
rl ¼ dxl �
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Considering only the terms linear in the ek, we obtain, after some re-arrangement
rl ¼ kdxlk2 � d2
l|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

¼el

�
Xnc
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ek
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ð15Þ
We then separate the case k = l from the sum and obtain
rl ¼ el � el
dxl � dvl;l

dxl � dvl;l|fflfflfflfflffl{zfflfflfflfflffl}
¼1

�
Xnc
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ek
dxl � dvk;l

dxk � dvk;k
¼ �

Xnc

k 6¼l

ek
dxl � dvk;l

dxk � dvk;k
ð16Þ
which is the part of the error of rl linear in the ek, k 6¼ l, i.e. the error induced by ignoring the coupling of the
equations. To effectively de-couple each equation rl, this term should be made 0.

Before we try to minimize Eq. (16), we first start with some observations regarding the constraint gradients
vk,i. Given a molecule and a set of kk which satisfy the nc constraint equations as in Eq. (4), we can rotate the
molecule (i.e. the positions at time t and t + Dt) with any given orthogonal 3 · 3 matrix R
Rx
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ð17Þ
and the kk will still satisfy the constraint equations. This also holds for translations along any vector s
sþ x
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since the gradients v
ðtÞ
k;i are translationally independent and hence are not affected by the choice of s (Eq. (3)).
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Given the matrix V, the columns of which consist of the constraint gradients vk,i, and kk such that all con-
straint equations are satisfied, we can write the constrained particle positions (Eq. (4)) as (superscripts
removed for clarity)
x1

x2

..

.

xnp

0BBBB@
1CCCCA ¼

~x1

~x2

..

.

~xnp

0BBBB@
1CCCCAþ

v1;1 v2;1 � � � vnc;1

v1;2 v2;2 � � � vnc;2

..

. ..
. . .

. ..
.

v1;np v2;np � � � vnc;np

0BBBB@
1CCCCA

k1

k2

..

.

knc

0BBBB@
1CCCCA; ð19Þ
where np is the number of particles in the molecule, or, in matrix notation
X ¼ eX þ Vk ð20Þ

which we can write as
Vk ¼ X� eX: ð21Þ

Given any invertible nc · nc matrix A, we can re-write Eq. (21) as
ðVAÞðA�1kÞ ¼ X� eX ð22Þ

or
ðVAÞ|ffl{zffl}
¼VH

kH ¼ X� eX ð23Þ
which, since we are solving for k, is equivalent to the problem in Eq. (21). Therefore, using a linear recombi-
nation of the constraint gradients, as given by the non-singular matrix A, does not affect the constraint prob-
lem. The kH

k are different than the original kk, but, given the different constraint gradients (Vw vs. V), both
solve the constraint equations.

We now want to find the linear recombination of the constraint gradients such that the right-hand side of
the linear error (Eq. (16)) is 0. The remaining error (Eq. (14)) should then only be quadratic in the ek and the
iteration should converge quadratically. We start by re-writing the constraint gradients vk,i as the linear
recombination
vH

k;i ¼ vk;i þ
X
j 6¼i

aj;ivk;j; ð24Þ
where aj,i are the entries of an nc · nc matrix A with unit diagonal elements. Inserting the recombined con-
straint gradients (Eq. (24)) into the dvk,i (Eq. (7)) we obtain
dvH

k;i ¼ vH

k;ia � vH

k;ib ¼ vk;ia þ
X
j 6¼ia

aj;iavk;j

" #
� vk;ib þ

X
j 6¼ib

aj;ibvk;j

" #
¼ dvk;i þ

X
j 6¼i

aj;idvk;j ð25Þ
which we re-insert into the right-hand side of the linear residual (Eq. (16))
rl ¼
Xnc

k 6¼l

ek

dxl � ðdvk;l þ
P

j 6¼laj;ldvk;jÞ
dxk � ðdvk;k þ

P
j 6¼kaj;kdvk;jÞ

: ð26Þ
We will now solve the error in rl induced by each constraint k 6¼ l separately. For this, it suffices to solve the
nominator in Eq. (26):
dxl � dvk;l þ
X
j 6¼l

aj;ldvk;j

 !
¼ 0 ð27Þ
for all k 6¼ l. For convenience, we can re-write Eq. (27) as a linear sum of scalars
X
j 6¼l

aj;lðdvk;j � dxlÞ ¼ �ðdvk;l � dxlÞ ð28Þ
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which, for all k 6¼ l, is a system of nc � 1 linear equations in the nc � 1 unknowns aj,l, j 6¼ l
r1;1 � � � r1;l�1 r1;lþ1 � � � r1;nc

..

. . .
. ..

. ..
. . .

. ..
.
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. . .
. ..
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. . .

. ..
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..
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..

.
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.
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..

.
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0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
; ð29Þ
where ri, j = dvi, j Æ dxj. Computing the ai,l for any given l in such a way, however, ignores the influence of the
other columns of A, namely the ai, k, k 6¼ l. We must therefore compute the columns of A iteratively as de-
scribed in Algorithm 1, where sA is the tolerance for the entries of A. The resulting matrix A0 can then be ap-
plied to the constraint gradients matrix V directly.

Since solving nc systems of linear equations in nc � 1 unknowns is in Oðn4Þ, this is hardly a practical way of
improving the performance of the SHAKE algorithm. However, we need not do this at every time-step. In the
case of rigid molecules, if instead of using the unconstrained pairwise distances dx

ðtÞ
k for each molecule in each

time-step we use the initial constrained positions

Algorithm 1

Compute A iteratively
1:
 Initialize A0  Inc
2:
 repeat
3:
 Compute all ri, j dvi, j Æ dxj
4:
 Initialize A Inc
5:
 for each constraint rldo
6:
 Solve Eq. (29) for entries ai, l, i 6¼ l of A
7:
 end for
8:
 V VA
9:
 A0 A0A
10:
 until maxijjAjj1i 6 sA
x
ðt0Þ
ka and x

ðt0Þ
kb from a previous time-step, we only need to compute A0 once for each distinct rigid molecule

type. The matrix A0 works for all molecules of the same type, since we have shown in Eqs. (17) and (18) that
the solution of the constraint equations is indifferent to translations and rotations. The preconditioner A0 can
be computed and stored offline to be passed to the simulation as a parameter. It must then only be applied to
the constraint gradients V by a matrix–matrix multiplication
V VA0:
The convergence rate of this approach can be extracted from the linear error (Eq. (16)) by replacing the uncon-
strained particle positions ~xi with the first-order approximation
~xi � xi þ
Xnc

k¼1

ekvk;i ð30Þ
which is valid if we assume that the particle movement is dominated by internal degrees of freedom, which is
the case if constraints were applied in the first place.
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Eq. (16) then breaks down as follows:
rl ¼ �
Xnc

k 6¼l

ek

ðxka þ
P

jejvj;ka � xkb �
P

jejvj;kbÞ � dvk;l

ðxka þ
P

jejvj;ka � xkb �
P

jejvj;kbÞ � dvk;k
¼ �

Xnc

k 6¼l

ek

dxk � dvk;l þ
P

jejdvj;k � dvk;l

ðdxk þ
P

jejdvj;kÞ � dvk;k

¼ �
Xnc

k 6¼l

ek
dxk � dvk;l

ðdxk þ
P

jejdvj;kÞ � dvk;k
�
Xnc

k 6¼l

Xnc

j¼1

ekej
dvj;k � dvk;l

ðdxk þ
P

jejdvj;kÞ � dvk;k
: ð31Þ
The first sum in Eq. (31) is 0 by construction (see Eq. (27)), and the second term is quadratic in the errors ek.
Since all terms linear in the ek disappear, the method has quadratic convergence.

The complete algorithm, P-SHAKE, is shown in Algorithm 2. The only difference to the traditional
SHAKE are the lines 1–3 and 6, where the preconditioner A0 is computed once (lines 1–3) and applied to
the constraint gradients for each molecule thereafter (line 6).

Algorithm 2

Preconditioned SHAKE
1:
 if t = t0 then
2:
 Compute A0 for each rigid molecule type

3:
 end if
4:
 for all rigid molecules do
5:
 Compute the constraint gradients V
6:
 V VA0
7:
 loop

8:
 for each constraint k do
9:
 ek  dx2
k � d2

k

10:
 end for
11:
 if maxkjekj > s then
12:
 Exit loop

13:
 end if
14:
 for each constraint k do
15:
 kk  � ek
2dxk �dvk;k
16
 end for
17:
 for each particle i do
18:
 for each constraint k do
19:
 xi xi + kkvk,i
20:
 end for
21:
 end for
22:
 end loop
23:
 end for
The computational cost of the main loop (Lines 7–22) is dominated by the particle position update in Line
19, which is in OðnpncÞ. The main cost, however, is outside the main loop, namely in Line 6, where the matrix–
matrix multiplication appears to have a cost of Oðnpn2

cÞ and since in rigid molecules np � nc, we would be in
Oðn3

cÞ for all practical purposes.
The matrix V, however, is sparse: each column k contains only two non-zero entries, namely the entries for

the two particles xka and xkb. If each column contains only two entries, then each row contains, on average,
2
np

nc entries. Each row is then multiplied with a column of A0, which, since we have only 2
np

nc non-zero entries,

can be done at a cost in Oðn�1
p n2

cÞ. This is then done for all np rows for a total cost in Oðn2
cÞ. The total cost of the

algorithm is therefore in Oðn2
cÞ.

Up to here we have only considered constraints in rigid molecules. In the case of molecules with rigid sub-
groups, no change in the algorithm is required. Although the orientation of the constraint gradients in the
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matrix V change relative to each other between subgroups, no error is introduced since dvi,j = 0 for constraints
i and j in disjoint sub-groups.

For semi-rigid molecules subject to only small internal movement, the preconditioner A0 still works.
Although convergence is no longer guaranteed to be quadratic (Eq. (16) is no longer guaranteed to be 0),
the iteration can be expected to converge at a much higher rate than the traditional uncoupled treatment
(Eq. (9)), since the error in Eq. (16) will be considerably smaller.

For semi-rigid molecules subject to more significant conformational changes, a preconditioner A0 can be
maintained for each individual molecule and be updated periodically to account for the changing molecular
configuration. If the preconditioner A0 is still close to optimal, we can update it much more efficiently than in
Algorithm 1 by solving Eq. (28) for each ai,j, i 6¼ j separately using
ai;j ¼ �
dvi;j � dxj

dvi;i � dxj
: ð32Þ
This update is described more formally in Algorithm 3. The update itself is in Oðn2
cÞ, yet it needs only to be

applied periodically and should reduce the number of iterations required for convergence.

Algorithm 3

Update A0
1:
 Initialize A Inc
2:
 for i from 1 to nc do
3:
 for j from 1 to nc do
4:
 if i 6¼ j then
5:
 Ai;j ¼ � dvi;j�dxj

dvi;i�dxj
6:
 end if
7:
 end for
8:
 end for

9:
 V VA
10:
 A0 A0A
3. Results

To assess the performance of the four methods described – SHAKE, M-SHAKE, Ciccotti’s Matrix Method
(hereafter referred to as CMM) and P-SHAKE – molecular dynamics simulations were run with three different
rigid solvents: water (SPCnE, Berendsen et al. [3], nc = 3), dimethyl sulfoxide (DMSO, Liu and Müller-Plathe
[14], nc = 6) and chloroform (CHCl3, Tironi and van Gunsteren [17], nc = 9).

Additionally, simulations of semi-rigid ethane and cyclohexane were run. The ethane was modelled as an
all-atom molecule using the AMBER force-field [6], yet with the two methyl end groups kept rigid using 6
constraints each (nc = 12). The cyclohexane molecules were modelled as described in Faller et al. [7] with har-
monic angular potentials, yet with all bond-lengths constrained (nc = 18).

The three rigid solvents were simulated in cubic, periodic cells of edge length 3.166 nm, 5.009 nm and
5.2075 nm each, containing 1000 molecules at the densities of 0.997, 1.095 and 1.489 g cm�3 at 298 K for
the water, DMSO and CHCl3 respectively. The water simulations were run with a time-step of 2 fs and the
DMSO and chloroform with a time-step of 5 fs. The ethane simulations were run in a cubic, periodic cell
of edge length 4.295 nm containing 1000 molecules at 100 K with a time-step of 2 fs. The cyclohexane simu-
lations were run in a cubic, periodic cell of edge length 5.6454 nm containing 1000 molecules at 298 K with a
time-step of 2 fs. Electrostatic and Lennard-Jones interactions were truncated at 1.0 nm in all simulations.

All simulations were equilibrated for 10 000 steps while coupled to a heat bath using a coupling constant of
0.1 ps. All data (no. of iterations, timings, etc.) was averaged from the 1000 simulation time-steps following
equilibration.
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Fig. 1. Average number of iterations and average computation time for SHAKE, M-SHAKE, CMM and P-SHAKE for the solvents
tested.
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Table 1
Details for each algorithm for each molecule for s = 10�10

Molecule Method No. of iterations ls per mol % total time

H2O SHAKE 36.08 16.40 10.28
M-SHAKE 3.00 10.03 6.55
CMM 5.47 10.86 7.05
P-SHAKE 4.83 3.38 2.31

DMSO SHAKE 26.62 26.86 27.59
M-SHAKE 2.00 14.72 17.27
CMM 2.49 12.02 14.57
P-SHAKE 4.07 7.23 9.30

CHCl3 SHAKE 30.63 53.23 29.37
M-SHAKE 2.00 24.44 16.03
CMM 2.67 20.09 13.56
P-SHAKE 4.10 13.17 9.33

Ethane SHAKE 22.95 77.64 41.82
M-SHAKE 3.00 52.21 32.59
CMM 6.42 48.55 31.01
P-SHAKE 5.26 27.39 20.23

Cyclohexane SHAKE 9.72 105.35 8.39
M-SHAKE 2.03 82.38 6.68
CMM 3.11 73.16 5.98
P-SHAKE 4.93 73.36 6.00

P. Gonnet / Journal of Computational Physics 220 (2007) 740–750 749
All 4 algorithms were implemented in the FASTTUBE simulation software [18] and compiled with the Intel
Fortran Compiler 9.0 using the Intel Math Kernel Library 7.2 BLAS and LAPACK routines. All simulations
were run on an IBM T40p ThinkPad computer with an 1.6 GHz Intel Pentium M processor.

The SHAKE algorithm was implemented as first described in Ryckaert et al. [16]. Both M-SHAKE and
CMM where implemented using an LU-factorization [9] of the Jacobian (Eq. (11)). For CMM the LU-factor-
ization was computed only once and subsequently used to solve Eq. (12) for the different right-hand sides, as
opposed to computing the inverse as suggested in Ciccotti and Ryckaert [5]. The factorization was computed
using the LAPACK subroutine DGETRF and the system was then solved using the LAPACK subroutine
DGETRS. P-SHAKE was implemented as described in Section 2. The sparse matrix–matrix multiplication
was implemented by hand. The matrices A0 were pre-computed for each molecule type using MATLAB
(MATLAB 7, The MathWorks Inc., Natick, MA, 2000). For the cyclohexane simulations, the preconditioner
was computed for the relaxed configuration of the cyclohexane molecules. No update of the preconditioner
was required.

The number of iterations and microseconds required on average to converge to a specified absolute toler-
ance s were recorded for s = 10�2,10�3, . . . , 10�14 and are shown in Fig. 1. Results for s = 10�10 for each
method and solvent are summarized in Table 1.

Since an LU-factorization is probably overkill for small systems (i.e. water with nc = 3), a simulation was
run using M-SHAKE with an explicit solution for the linear system of equations (Eq. (12)), computed with
Maple [4] using the packages linalg and codegen for automatic code generation. To allow for a fair com-
parison, P-SHAKE was re-compiled for a fixed nc = 3 and the sparse matrix–matrix multiplication VA0 was
coded explicitly. For water molecules at s = 10�14 M-SHAKE and P-SHAKE require on average 3.06 and
2.89 ls, respectively.

4. Conclusions

We have presented P-SHAKE, a linear constraint solver for rigid and semi-rigid molecules in molecular
dynamics simulations. The algorithm is an extension of the classical SHAKE algorithm and differs only inso-
far, that the constraint gradients are linearly recombined such that the individual constraint equations become



750 P. Gonnet / Journal of Computational Physics 220 (2007) 740–750
linearly independent (i.e. the constraint equations are linearly de-coupled). The thus modified P-SHAKE con-
verges quadratically, requiring far less iterations than SHAKE to achieve convergence for low tolerances.

Due to the low computational cost of the initial preconditioning and of each iteration (both in Oðn2Þ) and its
quadratic convergence, it significantly out-preforms both M-SHAKE and CMM for tightly coupled, rigid mol-
ecules and molecules with tightly coupled, rigid subgroups. This is due to the cost in Oðn3Þ per iteration required
by M-SHAKE and the linear convergence of CMM. This asymptotic advantage is backed by the timings in Fig. 1,
where the lower initial cost, the low cost per iteration and the quadratic convergence can be observed.

The algorithm preforms best for small rigid molecules or molecules with rigid sub-groups. For the semi-
rigid molecules, P-SHAKE out-preforms M-SHAKE and CMM for ethane, whereas for cyclohexane the
results are more or less equal.

The method can also be applied to semi-rigid molecules, as the simulations of ethane and cyclohexane dem-
onstrate. In the case of ethane, since the rigid sub-groups are independent (i.e. they do not share any con-
straint), the preconditioner works as with any rigid molecule. In the case of cyclohexane, the internal
movements of the molecule do not greatly affect the effectiveness of the preconditioner. Whenever large defor-
mations occur, the preconditioner can be updated rather efficiently.
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